1,308 research outputs found

    The computational neurology of active vision

    Get PDF
    In this thesis, we appeal to recent developments in theoretical neurobiology – namely, active inference – to understand the active visual system and its disorders. Chapter 1 reviews the neurobiology of active vision. This introduces some of the key conceptual themes around attention and inference that recur through subsequent chapters. Chapter 2 provides a technical overview of active inference, and its interpretation in terms of message passing between populations of neurons. Chapter 3 applies the material in Chapter 2 to provide a computational characterisation of the oculomotor system. This deals with two key challenges in active vision: deciding where to look, and working out how to look there. The homology between this message passing and the brain networks solving these inference problems provide a basis for in silico lesion experiments, and an account of the aberrant neural computations that give rise to clinical oculomotor signs (including internuclear ophthalmoplegia). Chapter 4 picks up on the role of uncertainty resolution in deciding where to look, and examines the role of beliefs about the quality (or precision) of data in perceptual inference. We illustrate how abnormal prior beliefs influence inferences about uncertainty and give rise to neuromodulatory changes and visual hallucinatory phenomena (of the sort associated with synucleinopathies). We then demonstrate how synthetic pharmacological perturbations that alter these neuromodulatory systems give rise to the oculomotor changes associated with drugs acting upon these systems. Chapter 5 develops a model of visual neglect, using an oculomotor version of a line cancellation task. We then test a prediction of this model using magnetoencephalography and dynamic causal modelling. Chapter 6 concludes by situating the work in this thesis in the context of computational neurology. This illustrates how the variational principles used here to characterise the active visual system may be generalised to other sensorimotor systems and their disorders

    Bilharziasis in the Sudan

    Get PDF
    1. A resume has been written, in the light of our present and accumulated knowledge, and based on the works and the conclusions arrived at by the many original investigators, of the three different types of human Schistosomiasis found in the world. 2. Various aspects in regard to the history, the distribution and incidence of the disease, the mode of the infection of the different hosts, the life history of the incriminated parasites and their pathological effects on the human subject, have been considered. 3. The symptomatology, treatment, diagnosis and prognosis of the disease have also been discussed generally and as fully as possible. 4. Consideration has also been given the different known varieties of snail "carriers ", and points in connection with their distribution in the world, and the Sudan, their habitat, and the specific nature of the infection they carry, have been noted. 5. Special reference has been made to the incidence of Schistosomiasis in the Sudan. 6. For the purpose of illustration, a number of cases occurring among school -boys have been selected, in order to show the type of disease found in a non -irrigated area of that country, and the symptomatology, diagnosis, and treatment of these cases have been given in detail. 7. Particular attention has been paid to the great value of Antimony Tartrate treatment, and the beneficial effects which have accrued in the treatment prophylaxis, and eradication of the disease, since its introduction. Other forms of treatment and drugs have also been compared and described. 8. Prophylactic methods, such as may be, and are, applied in the Sudan and in the world in general, have been discussed at length, and the various difficulties encountered, racial, economic, and religious, in regard to their application, mentioned. 9. In conclusion it has been pointed out that although many problems remain yet to be solved, the future in regard to this serious disease, and its effects on the human race, is not unhopeful

    Transport properties of nano-devices: One-dimensional model study

    Full text link
    A 1D model study of charge transport in nano-devices is made by comparing multi-configuration time dependent Hartree-Fock and frozen core calculations. The influence of exchange and Coulomb correlation on the tunneling current is determined. We identify the shape of the tunneling barrier and the resonance structure of the nano-device as the two dominant parameters determining the electron transport. Whereas the barrier shape determines the size of the tunneling current, the resonances determine the structure of the current.Comment: 4 page

    A Primer on Variational Laplace (VL)

    Get PDF
    This article details a scheme for approximate Bayesian inference, which has underpinned thousands of neuroimaging studies since its introduction 15 years ago. Variational Laplace (VL) provides a generic approach to fitting linear or non-linear models, which may be static or dynamic, returning a posterior probability density over the model parameters and an approximation of log model evidence, which enables Bayesian model comparison. VL applies variational Bayesian inference in conjunction with quadratic or Laplace approximations of the evidence lower bound (free energy). Importantly, update equations do not need to be derived for each model under consideration, providing a general method for fitting a broad class of models. This primer is intended for experimenters and modellers who may wish to fit models to data using variational Bayesian methods, without assuming previous experience of variational Bayes or machine learning. Accompanying code demonstrates how to fit different kinds of model using the reference implementation of the VL scheme in the open-source Statistical Parametric Mapping (SPM) software package. In addition, we provide a standalone software function that does not require SPM, in order to ease translation to other fields, together with detailed pseudocode. Finally, the supplementary materials provide worked derivations of the key equations

    The evolution of brain architectures for predictive coding and active inference

    Get PDF
    This article considers the evolution of brain architectures for predictive processing. We argue that brain mechanisms for predictive perception and action are not late evolutionary additions of advanced creatures like us. Rather, they emerged gradually from simpler predictive loops (e.g. autonomic and motor reflexes) that were a legacy from our earlier evolutionary ancestors-and were key to solving their fundamental problems of adaptive regulation. We characterize simpler-to-more-complex brains formally, in terms of generative models that include predictive loops of increasing hierarchical breadth and depth. These may start from a simple homeostatic motif and be elaborated during evolution in four main ways: these include the multimodal expansion of predictive control into an allostatic loop; its duplication to form multiple sensorimotor loops that expand an animal's behavioural repertoire; and the gradual endowment of generative models with hierarchical depth (to deal with aspects of the world that unfold at different spatial scales) and temporal depth (to select plans in a future-oriented manner). In turn, these elaborations underwrite the solution to biological regulation problems faced by increasingly sophisticated animals. Our proposal aligns neuroscientific theorising-about predictive processing-with evolutionary and comparative data on brain architectures in different animal species. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'

    Anticipation in architectural experience: a computational neurophenomenology for architecture?

    Get PDF
    The perceptual experience of architecture is enacted by the sensory and motor system. When we act, we change the perceived environment according to a set of expectations that depend on our body and the built environment. The continuous process of collecting sensory information is thus based on bodily affordances. Affordances characterize the fit between the physical structure of the body and capacities for movement in the built environment. Since little has been done regarding the role of architectural design in the emergence of perceptual experience on a neuronal level, this paper offers a first step towards the role of architectural design in perceptual experience. An approach to synthesize concepts from computational neuroscience with architectural phenomenology into a computational neurophenomenology is considered. The outcome is a framework under which studies of architecture and cognitive neuroscience can be cast.Comment: 1 title-page, 23 pages, 5 figure

    Some interesting observations on the free energy principle

    Get PDF
    Biehl et al (2020) present some interesting observations on an early formulation of the free energy principle in (Friston, 2013). We use these observations to scaffold a discussion of the technical arguments that underwrite the free energy principle. This discussion focuses on solenoidal coupling between various (subsets of) states in sparsely coupled systems that possess a Markov blanket - and the distinction between exact and approximate Bayesian inference, implied by the ensuing Bayesian mechanics.Comment: A response to a technical critique [arXiv:2001.06408] of the free energy principle as presented in "Life as we know it

    Active inference, stressors, and psychological trauma: A neuroethological model of (mal)adaptive explore-exploit dynamics in ecological context

    Get PDF
    This paper offers a formal account of emotional inference and stress-related behaviour, using the notion of active inference. We formulate responses to stressful scenarios in terms of Bayesian belief-updating and subsequent policy selection; namely, planning as (active) inference. Using a minimal model of how creatures or subjects account for their sensations (and subsequent action), we deconstruct the sequences of belief updating and behaviour that underwrite stress-related responses – and simulate the aberrant responses of the sort seen in post-traumatic stress disorder (PTSD). Crucially, the model used for belief-updating generates predictions in multiple (exteroceptive, proprioceptive and interoceptive) modalities, to provide an integrated account of evidence accumulation and multimodal integration that has consequences for both motor and autonomic responses. The ensuing phenomenology speaks to many constructs in the ecological and clinical literature on stress, which we unpack with reference to simulated inference processes and accompanying neuronal responses. A key insight afforded by this formal approach rests on the trade-off between the epistemic affordance of certain cues (that resolve uncertainty about states of affairs in the environment) and the consequences of epistemic foraging (that may be in conflict with the instrumental or pragmatic value of ‘fleeing’ or ‘freezing’). Starting from first principles, we show how this trade-off is nuanced by prior (subpersonal) beliefs about the outcomes of behaviour – beliefs that, when held with unduly high precision, can lead to (Bayes optimal) responses that closely resemble PTSD
    • …
    corecore